• Users Online: 414
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 6  |  Issue : 3  |  Page : 31-36

Sport and physical activities in total ankle replacement: Mobile- and fix-bearing


1 IRCCS Istituto Ortopedico Galeazzi, CASCO Department, Foot and Ankle Division, Milan, Italy
2 IRCCS Istituto Ortopedico Galeazzi, CASCO Department, Foot and Ankle Division; Department of Biomedical Sciences, University of Milan, Milan, Italy
3 Department of Orthopaedics, Medical University of South California, Charleston, SC, USA

Correspondence Address:
Riccardo D'Ambrosi
IRCCS Istituto Ortopedico Galeazzi, CASCO Department, Foot and Ankle Division, Milan
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/atr.atr_14_17

Rights and Permissions

Background: The number of total ankle replacements (TARs) is rapidly increasing in consequence of the availability of new designs allowing to save the range of motion and to preserve against adjacent joints degeneration. This study aimed to compare participation in sports 12 months after TAR with either mobile-bearing or fix-bearing prosthesis. Materials and Methods: One hundred and seventeen primary TARs were performed (77 Hintegra, 40 Zimmer Trabecular Metal Total Ankle). We retrospectively assessed pain and function using the visual analogue scale (VAS) pain scale, American Orthopedic Foot and Ankle Society (AOFAS), Short-Form Health Survey (SF-12 divided into Mental (MCS) and Physical (PCS) score) obtained preoperatively, 6 and 12 months postoperatively. Activity levels were determined using the Halasi ankle activity scale and the University of California at Los Angeles (UCLA) score obtained preoperatively and 12 months after the surgery. Radiographic examination included plain radiographs with full weight-bearing taken preoperatively and 12 months postoperatively. Results: All patients showed a significant improvement for AOFAS, VAS, and SF-12 scores (P < 0.05). The Halasi activity scale and UCLA score were 4.2 ± 1.2 and 6.6 ± 1.8, respectively, for the fix-bearing group and 3.7 ± 1.5 and 6.3 ± 2.3 for the mobile-bearing 12 months after the surgery. In our series, jogging, dancing, and skiing represented the three most frequent sports. In the fix-bearing group, 60% of the patients practiced sport 1 year after surgery and 49.4% in the mobile-bearing group. The fix-bearing prosthesis had a quicker recovery and better functional outcomes within the first 6 months after the operation. At 1 year, there was not a significant difference in return to sport and physical activities between patients treated with a mobile-bearing implant and a fix-bearing implant. Conclusions: At 1 year, both fixed and mobile bearing present significant improvements in functional and recreational scores, with neither prove superior.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed5928    
    Printed400    
    Emailed0    
    PDF Downloaded518    
    Comments [Add]    

Recommend this journal